

A-LEVEL Mathematics

MD02 – Decision 2

Mark scheme

6360

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

01			Solution			Mork	Total	Commont
QI			Solution			Wark	Total	Comment
(a)	6	11	7	2	**			
	10	6	1	0	**	B1		All elements x replaced
	9	8	6	8	**			with $k - x, k \ge 19$
	5	7	2	10	**	B1	2	Extra column introduced
	8	10	5	5	**		-	with all values being the
								same non-negative number may be seen in (b)
(b)	1	5	6	2	0			
	5	0	0	0		M1		Column reduction with 4
	4	2	5	8	•			or more columns correct
	0	1	1	10		A1		All columns correct and
	3	4	4	5	0			three lines used to cover
								zeros (may have vertical line in 1 st col, see alt)
	1				1			
	0	4	5	1	0			Augmenting (by 1) with
		0	0	0		dM1		4 or more rows/columns
	3	1	4	7	0			correct
	0	1	1	10	1	Δ1		All correct with three
	2	3	3	4	0			lines drawn to cover
								zeros
		I	1		1			
	0*	3	4	0	0			Augmenting (by 1) with 4
	6	0	Ø	0*	2	dM1		or more rows/columns
	3	0*	3	6	0			correct
	0	0	0*	9	1			
	2	2	2	3	0*			
	FIVE lines nee	eded to cov	/er the zer	os, so opt	imai	A1		All correct with five lines
	allocation fou	nu						drawn to cover zeros
								anu opumai seen
	Tom will not b	be selected	for the te	am OE		A1	7	CSO
				_				
					Tot	al	9	
Notes:	Candidate may	/ write ans	wer to (a) i	ın (b), do	not penalise	, give ben	efit of d	oubt to candidate
Stateme	a to see (at lea	si) uplima heeds to be	i iui Ai e in contev	t not just	'Tom'			
Jucine				a, not just	10111			

Q1	Solution		Mark	Total	Comment
(b)	Alternative				
			IVI 1		Column reduction with 4
	4 2 5 8 0				or more columns correct
	0 1 1 10 0		۸1		
	3 4 4 5 0		AI		All columns correct and
					zeros
					Augmenting (by 1) with
			dM1		4 or more rows/columns
					correct
		_			
			A1		All correct with three
					lines drawn to cover
					zeros
					Augmenting (by 1) with 4
			dM1		or more rows/columns
					correct
		_			
	Five lines needed to cover the zeros, so entimal		• •		
	allocation found		A1		All correct with five lines
					drawn to cover zeros
					and optimal seen
	Tom will not be calcuted for the team		A 4	7	220
			AT	1	030
		Total		9	
					l

Q2			Soluti	on		Mark	Total	Comment
(a) (i)	[18 + 2	20 + 25 + 8	7] = 150	B1				
(a) (ii)	[51 + 1	4-5-3-	- 87] = 144	B1	2			
(b)	[Max] f	low ≤ their	min from (a)			M1		
	[Max] f less th	low of gas an or equa	[through the r I to 144 cm ³ s ⁻	A1	2	Including units		
(c)(i)		Arc	Forward	Backward		M1		Correct at <i>SA</i> , <i>AC</i> , <i>SB</i> , and <i>BE</i>
		SA	29	0				
		AC	4	0		844		
		CF	17	5		IVIT		Correct at CF , FT , EG ,
		FT	68	0				and GI
				6				
			<u> </u>	0		A1	3	All correct
		DE	8	0				
		SB	32	0				
		BE	14	3				
		EG	4	10				
		GT	67	0				
		BL	0	4				
		DC	22	2				
(c)(ii)	Modify	ing one fe	asible flow (bo	th increasing a	nd	B1		
	decrea	ising) corre	ectly on the dia	agram				
	e.q.							
	U	Path		Extra Flow	v	M1		One correct path and
		SACFT		4				extra flow in table
		SAD(CF	, F or G) T	1		A1		Two correct paths and
		SBEGT		4				extra flows in table
						A1	4	All correct
(c)(iii)	[Max. f	low = 38 +	4 + 1 + 4 =]	47 $[\text{cm}^3 \text{ s}^{-1}]$		B1	1	
					Total		12	
Notes: ((c) If MO	(b) may scored	/ see symb l in (i), ther	ols for 'less th candidate sco	an or equal to' ores B0 in (ii)				
(c)(i) if N (c)(ii) th Note: th	IOMO sc ere are ere is n	ored, SC1 other obtu	for SA, AC, C se possibilities	<i>F, FT</i> or S <i>B,</i> s, but any corre	<i>BE, EG, GT</i> ct soln must	all co have	orrect total(S/	4 <i>T</i>) = 5 and <i>SBEGT</i> = 4

Q3		Mark	Total	Comment	
(a)	Use of p and $1-p$ for	M1			
$ \begin{array}{c} \mathbf{Q3} \\ (\mathbf{a}) \\ \end{array} $	Use of p and $1 - p$ for [If Winnie plays] [W ₁] [W ₂] [W ₃]	Solution or John's strategies	Mark M1 A1 A1 M1 W1 W1 W1 W2	Total	CommentOne correct expressionAll three expressions correctThree linesAll three ruled lines correct (-2 to 0, 7 to -2 and -6 to 4) with numbers on both vertical axes
-5	[Optimal/maximum a [p = 9/11] [Value of the game f	at] $2p - 2 = 7 - 9p$ or John]: $[2 \times (9/11) - 2] = -4/11$	M ₃ A1 OE A1	7	Must be exact

plays]	[Expected gain for Winnie]	M1		Either expression
[J ₁] [J ₂]	$\frac{0q + (-2)r + 4(1 - q - r) [= 4 - 4q - 6r]}{-2q + 7r + (-6)(1 - q - r) [= -6 + 4q + 13r]}$	-		correct (including th use of exactly two probability variables
4 - 4q - 6r = -6 + 4q + 13r	-4 / 11 = -4 / 11	A1F		Sets the correct expressions equal their value of the ga from (b)
q = 9/11, r = 2	2/11	A1		Both values correc
Winnie plays:	W_1 [with probability] 9/11 W_2 [with probability] 2/11 W_3 [with probability] 0	E1	4	Must have all three probabilities
Alternative S	olution			
Winnie never	olays W ₃ so			
[If John plays]	[Expected gain for Winnie]	(M1)		Either expression
$\begin{bmatrix} \mathbf{J}_1 \\ \\ \mathbf{J}_2 \end{bmatrix}$	$\frac{0p + (-2)(1-p) [= -2 + 2p]}{-2p + 7(1-p) [= 7 - 9p]}$	-		conect
-2 + 2p = 7 - 7	Эр	(A1)		Sets the correct ga expressions equal each other
p = 9/11		(A1)		
Winnie plays:	W_1 [with probability] 9/11 W_2 [with probability] 2/11 W_3 [with probability] 0	(E1)		Must have all three
				probabilities, but V be stated as never played earlier in th
				501011011

Q4			Solu	ution		Mark	Total	Comment
	-	-						
	Stage	State	From	Value				
	1	Ι	Т		475*			
		J	Т		480*			
		K	Т		475*			
		_						
	2	D	I	max(470, 475)	475*	B1		9 Values at Stage 2
		E	I	$\max(470, 475)$	475*			
		Г	J	$\max(465, 480)$	480			
		F	I	$\max(495, 4/5)$	495	M1		Using minimax –
			J	$\max(490, 480)$	490*			choosing at least two of
		C	K	$\max(495, 475)$	495			EI, FJ or GK (PI)
		G	J V	$\max(485, 480)$	485			
		11	Λ <i>ν</i>	$\max(480, 475)$	480*	A1		All values correct at
		П	Λ	$\max(4/5, 4/5)$	475**			Stage 2
	2	Δ	D	max(190, 175)	490*			
	5	A		max(480, 475)	480 ⁴			
				$\frac{11100}{1000}$ $\frac{1000}{1000}$	400	B1		9 Values at Stage 3
		B	T F	max(490, 490) max(485, 475)	490			
		D	E F	$\frac{\max(405, 475)}{\max(475, 490)}$	485	dM1		At least 7 values correct
			G	max(480, 480)	480*	•		At least / values concet
		C	F	$\max(490, 490)$ $\max(490, 490)$	490*	Δ1		All values correct at
		C	G	$\max(490, 490)$ $\max(500, 480)$	500			Stage 3
			H	$\max(495, 475)$	495			Stage 5
				max(195, 175)	195			
	4	S	Α	max(465, 480)	480*	B1		2 Values at Stags 4
		~	B	max(470, 480)	480*	ы		5 values at Stage 4
			С	max(460, 490)	490	۸1		
	L		-			AI		All Values correct at
								Stage 4
	S-B-G-K-T					A1		One correct route (not
	~							reversed)
	S-A-D-I-T							- the second sec
						A1		2 ^{na} correct route (not
								reversed) AND no
								others
	[Longest D	Days Drivi	ing Time :	=] 480 minutes C	ЭE	B1	11	Must include units
		-	-	-				
					Total	11		
Notes: c	condone on	nission of	max com	nparisons eg max	(470, 475)			

Q5	Solution M									Mark	Total	Comment
(a)	a ·	< 0)							B1	1	
(b)	$\frac{b}{1/}$	<u>/</u> 2 <	< ^c 3/	2						M1		
	3 <i>b</i>) <	С							A1	2	NMS 2/2
(c)(i)	<i>d</i> :	<u>+</u> 3	× 7	/2						M1		
	d -	+ 2	1/2	O	E					A1	2	NMS 2/2
(c)(ii)				1			1	1				
		P	x	у	z	S	t	и	value	B1		P = 1, $x = 0$, $y = 0$ and $u = 0$ all correct
		1	0	0	35 – 7a	-2 <i>a</i>	10 + a	0	100 - 2ab			
										M1		One of <i>z</i> , <i>s</i> or <i>t</i> correct
										A1		z, s and t all correct
										B1	4	value = 100 – 2 <i>ab</i>
(c)(iii)	10) +	a ≥	0	OE					M1		their $t \ge 0$ PI by final answer
	-1	10 :	≤ a -	< 0						A1	2	Allow $-10 \le a$ AND $a < 0$
									Total		11	
Notes:	(b)	Fo	or A1	, ac	cept $b < \frac{1}{3}$	c, or $\frac{1}{3}$	c > b or	c >	$3b BUT \overline{NO}$	T $6b <$	2c	
(c)(i)(ii) for both parts condone correct multiples for all marks eg $d/k + 21/2k$ (ii) condone omission of 'heading row', but be convinced (iii) their $(10 + a) > 0$ seen anywhere in soln scores M1												

Q6		Solution		Mark	Total	Comment
(a)	Activity	Farly	Late	B1		All early times correct
(4)	A	0	7			
	B	0	6			
		5	15	B1		All late times correct
		6	14			
	F	13	22			
	G H	14	22			
	I	22	31			
	J	22	31			
	K	31	40		2	
(b)	B-E-G-I-K			B1	1	Or reverse
(C)				M1		SCA, at least 10 labelled activities
I - H - G - F -				B1		Use of floats, at least three of <i>A</i> , <i>C</i> , <i>D</i> , <i>F</i> , <i>H</i> , <i>J</i> (either before or after activity)
E - D - C - B -				A1		All correct, including labelling and all floats before activity correct
0	10 20	30	40 50		3	
(d)(i)	Reduce G by 5 day	S		E1		Decrease G to 3 days
	Reduce both F and	<i>H</i> by 3 days		E1		Decrease <i>F</i> and <i>H</i> both to 4 days
(d)(ii)	Cost of reducing to $(g \times 500) + (f \times 250)$ (with at least 2 of the	the minimum comp + $(h \times 650)$ neir <i>f</i> , <i>g</i> , <i>h</i> non-zero)	letion time	M1		Calculates cost of reducing durations by 'their' reductions in (d)(i)
	[£]5200			A1		CAO
	[£]5200 > [£]5000, (s from the bonus pay	so the company with ment) so don't redu	n not make a profit uce (<i>F, G, H</i>)	E1F	5	Comparing their 5200 to 5000 PI and making a correct conclusion about whether to reduce durations
			Total		11	
Notes: ((d)(ii) eg Accept:	(c) For M1 all non-c g if their answer is le 'Yes/No' plus valid r	ritical activities must ess than 5000, (the e eason in context	t be on a separate re company would ben	ow efit from	n the bo	onus) so reduce E1F

Q7	Solution	Mark	Total	Comment			
(a)	Row Minima = $-2, -5, -6, -2$ Column Maxima = $-2, 6, -2, 7$	M1		Finds all row minima or all column maxima (may be seen on table.) Condone one slip			
	Max(Row Minima) = -2 Min(Row Maxima) = -2	A1		Both correct (may be indicated, not stated from 8 correct values)			
	Any two of AW, AY, DW and DY stated	A1					
	All four saddle points correct and no others stated	A1	4	AW, AY, DW and DY.			
(b)	Y dominates Z	B1					
	as $\begin{pmatrix} 2x \\ x-3 \\ -2 \\ -2 \end{pmatrix} < \begin{pmatrix} 3 \\ -5 \\ 7 \\ 6 \end{pmatrix}$ for integer $x < -3$.	E1		OE statement with $x < -3$ mentioned/used			
	D dominates C	B1 dep		Dependent on first B mark			
	as $(x - 1 \ 1 \ -2) \ge (x - 3 \ 3x - 3 \ -2)$ for integer $x < -3$.	E1		OE statement with $x < -3$ mentioned/used			
	W (or Y) dominates X	B1 dep		Dependent on first and second B marks, and no other further dominances stated/used			
	as $\binom{-2}{-3}_{x-1} < \binom{5}{6}_{1}$ for integer $x < -3$	E1	6	OE statement with $x < -3$ mentioned/used			
	$\left[or \begin{pmatrix} 2x\\ x-3\\ -2 \end{pmatrix} < \begin{pmatrix} 5\\ 6\\ 3 \end{pmatrix}\right]$						
	Total		10				
Notes: (a) the final A1A1 are independent of previous A1 the 'co-ordinates eg AW' must be stated not merely circling entries in the table for the final A1A1 If M0 scored then SC1 for two or more correct saddle points (b) working may be seen on table A candidate may subst $x = -4$ (instead of $x < -3$) and consider dominance as above. In this case all marks							
A candic	A candidate who subst $x = -3$ can score the B marks only						